On the bifurcation curve for an elliptic system of FitzHugh-Nagumo type
نویسندگان
چکیده
We study a system of partial differential equations derived from the FitzHugh-Nagumo model. In one dimension solutions are required to satisfy zero Dirichlet boundary conditions on the interval Ω = (−1, 1). Estimates are given to describe bounds on the range of parameters over which solutions exist; numerical computations provide the global bifurcation diagram for families of symmetric and asymmetric solutions. In the two dimensional case we use numerical methods for zero Dirichlet boundary conditions on the square domain Ω = (−1, 1) × (−1, 1). Numerical computations are given both for symmetric and asymmetric, and for stable and unstable solutions.
منابع مشابه
Solutions with internal jump for an autonomous elliptic system of FitzHugh - Nagumo type
Systems of elliptic partial di erential equations which are coupled in a noncooperative way, such as the FitzHugh-Nagumo type studied in this paper, in general do not satisfy order preserving properties. This not only results in technical complications but also yields a richer solution structure. We prove the existence of multiple nontrivial solutions. In particular we show that there exists a ...
متن کاملAn improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...
متن کاملHomoclinic Orbits of the FitzHugh-Nagumo Equation: The Singular-Limit
The FitzHugh-Nagumo equation has been investigated with a wide array of different methods in the last three decades. Recently a version of the equations with an applied current was analyzed by Champneys, Kirk, Knobloch, Oldeman and Sneyd [5] using numerical continuation methods. They obtained a complicated bifurcation diagram in parameter space featuring a C-shaped curve of homoclinic bifurcati...
متن کاملPattern Formation of the FitzHugh-Nagumo Model: Cellular Automata Approach
FitzHugh-Nagumo (FHN) model is a famous Reaction-Diffusion System which first introduced for the conduction of electrical impulses along a nerve fiber. This model is also considered as an abstract model for pattern formation. Here, we have used the Cellular Automata method to simulate the pattern formation of the FHN model. It is shown that the pattern of this model is very similar to those...
متن کاملInternal layer oscillations in FitzHugh–Nagumo equation
A controller-propagator system with a FitzHugh–Nagumo equation can be reduced to a free boundary problem when a layer parameter ” is equal to zero. We shall show the existence of solutions and the occurence of a Hopf bifurcation for this free boundary problem as the controlling parameter varies. c © 1999 Elsevier Science B.V. All rights reserved. AMS classi cation: primary 35R35; 35B32; seconda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002